ITEANZ Seminar - On Your Bike Cities 'safe enough' for travel by bicycle?

Inner Melbourne, Amsterdam and Copenhagen

RMIT 24 July 2018

Embargo: Not to be quoted, this research is still in progress

Warwick Pattinson
PhD Candidate, Urban Planning
warwick.pattinson@gmail.com

Comparative case study

Are Amsterdam & Copenhagen safer than Inner Melbourne?

- Three inner city areas: originally 'walking' cities, i.e. developed pre-car
- Adults who have transport choices and are or could-be bicyclists
- Primary 'Safety' crash avoidance, objective risk and perceived danger

19th **C** walking then extensive trains & trams

18th & 19th Cwalking & canals
19th C some trams
Single municipality *Area 79 km*²

17th – 19th C walking & canals 19th C some trams Single municipality Area 219 km²

Context is important: 19C Melbourne had Trains before and more Trams than Amsterdam or Copenhagen

Trams

26 routes – 487 trams 250 dble track kms

Trains 16 lines 372 kms

- Trams
 - Trains
 - Buses

Trams

16 routes - 216 trams 80 track kms

Trains

4 lines 52 track kms

Trains

7 lines 170 track kms

Melbourne c. 1910

Copenhagen c. 1940

What we know

- More injuries than reported in CrashStats (Sikic et al, 2009, Garrat et al, 2015)
- Single vehicle 'bike only' crashes are numerous but under reported (Schepers et al 2011, 2012, 2014), Biegler et al 2012)
- Threatening experiences very common

(Johnson et al 2010, Garrard, 2011)

- 'Safe System' approach not well developed in Victoria (or Australia)
 (Mooren et al 2011, 2013)
- 'Safety in numbers' works when motor traffic speeds and volumes are moderated (Jacobsen et al 2003, 2009, 2012,2015)

Understanding travel safety

adults have choices – safety is relative

Objective safety ('risk') – for government and institutional actors

Measurable risk: number of injuries related to a measure of travel
Risk reduction is an ethical criteria for governments and
corporations (eg. vehicle manufacturers)

Perceived safety ('danger') - for *individuals*, shapes behaviour Belief about danger is a threshold factor for mode choice.

Can my trip be safely made by bicycle?

Decision is based on beliefs:

- (a) 'system safety' (environmental danger),
- (b) individual ability to cope, reduce danger

Safety: Injury Risk for Trips by Mode (IMAP)

 $R_m = KSI_m / P / T_m$ (KSI = killed & seriously injured) (P = population) (T = share of trips)

•Trips in cars and on foot are low risk

•R= 1.2 to 1.3

Trips by bicycle have six times the risk of serious injury

$$R = 7.8$$

IMAP (Population 446,000)	Motor vehicle occupants	Pedestrians	Bicyclists	
KSI	251	163	156	
KSI/100,000 population	56.3	36.5	35	
Mode share	Node share 47%		4.7%	
Risk exposure index	1.2	1.3	7.8	
Area of each circle is proportional to the risk				

City Safety: Injury risk for riders trips compared

Risk in Inner Melbourne is:

1.7 X Metro Melb

14. X Amsterdam

12. X Copenhagen

Why the difference?

Study Area	Metro Melb	Inner Melb	Ams	Cph
Population (100,000)	40.87	4.46	8.20	5.59
Bicycling share of trips	<2%	4.7%	28 - 39%	30%
Bicyclists KSI	363	163	130	111*
K.S I per 100,000	8.8	36.5	15.8	19.9
Risk exposure index (KSI/100,000/mode share) Area of each circle is proportional to the risk	4.5	7.8	0.56	0.66

*probably under reported

Framework for Change

Recognise CONTEXT

- Morphology
- Culture
- Policy

Comprehensive 'safe system' CONTENT

- Infrastructure
- People/Behaviour
- Vehicles

PROCESS

- Institutions
- Decision Making
- Co-production

Cultural Context place of bicycling in city life

Inner Melbourne

- Car is 'king' of the road
- Bicyclists to keep out of the way of motorists
- Cycling only for the fit and fearless
- But people would like to bicycle

Amsterdam

- Bicyclists are 'kings of the road'
- Bikes are just how they get around
- Bicycling is for everyone

Copenhagen

- Road users are equal and look out for each other
- Bicycling is sensible city transport
- Bicycling is for everyone

Amsterdam (and Copenhagen) from Wegman et al 2006, and Furth 2017

Cities Designed for people using Sustainable Safety Principles

'mono-functionality' road classes	Three road types defined by the functions for people: - Local Access - Connection and Distribution - Through Movement (high volumes at speed)
'homogeneity'	Group users by mass, direction and speed
amongst users	to limit potential for injurious conflict between users
'predictability' for road users	Road users know what types of traffic to expect and at what speed, and only need to make one decision at a time
'forgivingness' of errors	People make mistakes; road design and road use culture to reduce and forgive errors with no serious outcomes
'awareness' by users	Road users to know their responsibilities and be aware of their individual limitations

Infrastructure: Recognisable functions

Local street ('Fietsstraat' - cars are 'guests') intersects with Distributor Road

Roadway Elements: Traffic lanes, Parking, Bike Path, Footpath

Safer Vehicles: eg City Trucks Local problem available solution - Vehicle Design Rules

Process – forward looking, co-operative

(Copenhagen incremental reduction in car parking)

Car parking reduced from 1960s

And more pedestrian space

Co-production Copenhagen

Drivers stop for bicyclists
- because they were asked to

Respect between uses: walking, riding and bike parking – no signs

Amsterdam and Copenhagen - they changed!

Amsterdam

Copenhagen

Change for Inner Melbourne - Key Ideas

► Adaptive failure: a socio-technical problem (Context)

not adapted to the sustainability and liveability challenges created by excessive car dependence.

► 'Good enough' safety? (Content) environment needs to be very good, pursued with best intentions across all three safe system pillars: infrastructure, vehicles and behaviour

➤ Safety (Process) is 'valued' can be co-produced by stakeholders

Context Opportunities

- 1) Major Construction projects use disruption
- 2) Proposed major road projects re-scope
- 3) Roads with trams redesign
- 4) Re-focus TAC
- 5) Growing number of professionals who have experienced safety in Northern European cities

Seize opportunities: Major Project Disruption Drivers are disrupted not people on bicycles

Process (Decision) Opportunities

- 1) Stakeholders: Build momentum for change on shared values
 - Engage with motorists interests
 - Support pedestrian interests
- 2) Consider the **NACTO** model

(National Association of City Transportation Officials, USA)

- a cooperative response to the challenges faced by cities 'to build cities as places for people, with safe, sustainable, accessible and equitable transportation choices, a strong economy and vibrant quality of life'.
- exchange ideas, insights, and document best practices
- make joint approaches on national transportation issues.

Content (Action) Opportunities

- 1) re-think intersection designs, road rules, priorities and enforcement
- 2) lower speeds (eg 30 km/h) on local streets, and at all intersections and crossings
- 3) rethink on-road car parking and 'loading/standing' provision centre-of-street parking on wide local streets?
- 4) narrow streets, one-way cars with two-way bikes?
- 5) consistent detail of road design elements like widths, surfaces and planting to communicate expected behaviour, speed limits, priorities
- 6) phase out shared paths separate walkers and bicyclists
- 7) advocate for best international practice in Australian vehicle design regulations (ADR's) for autonomous vehicles, bikes & trucks

Thank you

Questions

Discussion

warwick.pattinson@gmail.com

SELECTED REFERENCES

Alford, J. (2009). Engaging Public Sector Clients: From Service-Delivery to Co-production: Palgrave Macmillan.

Biegler, P., Newstead, S., Johnson, M., Taylor, J., Mitra, B., & Bullen, S. (2012). *Monash Alfred Cyclist Crash Study (MACCS)*. Retrieved from Department of Economic Development, J., Transport and Resources (2015). *Travel in metropolitan Melbourne*

VISTA Survey 2013. Melbourne: Victorian Government, 1 Treasury Place, Melbourne Retrieved from http://economicdevelopment.vic.gov.au/vista.

Furth, P. G. (Writer). (2017). Systematic Safety: The Principles Behind Vision Zero [Video]: BicycleDutch.

Garrard, J. (2011). Make it feel safe and they will come: addressing the actual and perceived risks of cycling. Asia Pacific Cycle Conference. Brisbane.

Garratt, M., Johnson, M., & Cubis, J. (2015). Road crashes involving bike riders in Victoria, 2002-2012. Retrieved from

Heifetz, R. A. (2003). Adaptive work. DEMOS COLLECTION(19), 68-78.

Jacobsen, P. L. (2003). Safety in numbers: more walkers and bicyclists, safer walking and bicycling. Injury Prevention, 9(3), 205-209.

Jacobsen, P. L., Racioppi, F., & Rutter, H. (2009). Who owns the roads? How motorised traffic discourages walking and bicycling. Injury Prevention, 15(6), 369-373.

Jacobsen, P. L., Ragland, D. R., & Komanoff, C. (2015). Safety in Numbers for walkers and bicyclists: exploring the mechanisms. Injury Prevention, 21(4), 217-220.

Jacobsen, P. L., & Rutter, H. (2012). Cycling Safety. In J. Pucher & R. Buehler (Eds.), City Cycling (First ed., pp. 141-156). USA: MIT Press (MA).

Johnson, M., Charlton, J., Oxley, J., & Newstead, S. (2010). Naturalistic Cycling Study: Identifying Risk Factors for On-Road Commmuter Cyclists.

(Continued on next slide)

Mooren, L., Grzebieta, R., & Job, S. (2011). Safe System-Comparisons of this Approach in Australia. Paper presented at the Australasian College of Road Safety Conference, Melbourne.

Mooren, L., Grzebieta, R., & Job, S. (2013). Can Australia be a global leader in road safety? Paper presented at the Proceedings of the 2013 Australasian Road Safety Research, Policing & Education Conference, Brisbane, Queensland. http://acrs.org.au/files/arsrpe/Paper%20115%20-%20Mooren%20-%20Road%20Safety%20Strategy.pdf

Pattinson, W. (1977). Bicycle Facilities for Australian Capital Cities.

Pattinson, W. (2015). Why do cyclists feel safer in inner Amsterdam and Copenhagen than Melbourne? A Contextual Framework. Paper presented at the State of Australian Cities National Conference, 2015, Gold Coast, Queensland, Australia.

Pattinson, W., & Thompson, R. G. (2014). Trucks and Bikes: Sharing the Roads. *Procedia - Social and Behavioral Sciences, 125*(0), 251-261. doi:http://dx.doi.org/10.1016/j.sbspro.2014.01.1471

Pattinson, W., & Whitzman, C. (2013). City cycling at the crossroads. Can Australia learn from Northern Europe? Paper presented at the State of Australain Cities 2013, Sydney. http://www.soacconference.com.au/wp-content/uploads/2013/12/Pattinson-Movement.pdf]

Schepers, J. P. (2013). A safer road environment for cyclists. (PhD Dissertation), Delft TU. Available from Delft TU (ISBN: 978-90-73946-12-5)

Schepers, J. P., Kroeze, P. A., Sweers, W., & Wüst, J. C. (2011). Road factors and bicycle–motor vehicle crashes at unsignalized priority intersections.

Schepers, J. P., Twisk, D., Fishman, E., Fyhri, A., & Jensen, A. (2014). The Dutch road to a high level of cycling safety. Paper presented at the International Cycling Safety Conference 2014, Göteborg, Sweden.

Schepers, P., Hagenziekerb, M., Methorsta, R., van Weed, B., & Wegman, F. (2012). A conceptual framework for road safety and mobility applied to cycling safety. Paper presented at the Road safety in a globalised and more sustainable world - current issues and future challenges, Hasselt.

Scott, M., Hurnall, D., & Pattinson, W. (1978). The Geelong Bike Plan: Practical Planning For Cyclists Real Needs. Paper presented at the Australian Transport Research Forum, Fourth Annual Meeting, Perth.

Sikic, M., Mikocka-Walus, A. A., Gabbe, B. J., McDermott, F. T., & Cameron, P. A. (2009). Bicycling injuries and mortality in Victoria, 2001–2006. MJA.

VicRoads. (2012). CrashStats. from VicRoads http://crashstat1.roads.vic.gov.au/crashstats/crashr.htm

Wegman, F. (2012). Driving Down the Road Toll by Building a Safe System. Retrieved from Adelaide: http://thinkers.sa.gov.au/wegmanflipbook/files/inc/911587238.pdf